Carbon Trading with Landfill Gas (LFG) and carbon credits; JI - and CDM - projects

Trade with greenhouse gas emissions respectively greenhouse gas allowances

Dipl.-Ing. Wolfgang Horst Stachowitz *DAS – IB GmbH, Germany*

www.das-ib.de stachowitz@das-ib.de

1. General

The presentation will give you some basics and back rounds about GreenHouseGases (GHG), the effects, the history, assessments and prognoses. Furthermore the consequences of an increasing greenhouse effect, Global Warming Potential (GWP) as an extract:

Table 1

Greenhouse gas	Estimated life-	20 years	100 years GWP	500 years GWP
	time (years)	GWP		
CO_2	Variable	1	1	1
CH ₄	12	62	23	7
N_20	114	275	296	156
Various CFCs	Depending on	Depending on	Depending on	Depending on
(Chlorofluorocarbons)	the gas type	the gas type	the gas type	the gas type

2. Emission trade – in accordance with the Kyoto protocol (act on greenhouse gas emission trade)), the EU directive 003/87/EU and the "grey market"- "environmental indulgence"

Timetables of establishing and furthermore, the two project-related mechanisms exist abroad (from the emitter's point of view) called "Joint Implementation" (JI) and the "Clean Development Mechanism" (CDM) – see slides during the lecture. The emission allowances ("certificates") of these projects are named ERUs (Emission Reduction Units) for JI projects and CERs

(last update: 19.IV.05)

(Certified Emission Reductions) for CDM projects. You will see actual market price and projects in the presentation and the prices dated in April 2005 of the proceedings.

Potential buyers - source: BMfUNR	d, Mr F. Schafhause	nn.	•	Biogas- Technology, & fax #49 / 431 / 6838
EU-member state	CO2-Emission 1990	CO2-Emission 2000	aim	difference in Mio. t CO ₂ -Äquivalenten
Belgium B	143,1	151,9	132,4	- 19,5
Danmark DK	69,4	68,5	54,8	- 13,7
Germany D	1222,8	991,4	966,0	- 25,4 / - 17 Industry
innland FIN	77,1	74,0	77,1	+ 3,1
rance F	551,8	542,3	551,8	+ 9,5
Greece GR	104,8	129,7	131,0	+ 1,3
reland IR	53,4	66,3	60,4	- 5,9
taly	522,1	543,5	488,2	- 55,3
uxemburg L	10,8	5,9	7,8	+ 1,9
Austria A	77,4	79,8	67,3	- 12,5
Portugal P	65,1	84,7	82,7	- 2,0
Sweden SWE	70,6	69,4	73,4	+ 4,0
spania ESP	286,4	386,0	329,4	- 56,6
Inited Kingdom UK	742,5	649,1	649,7	+ 0,6
letherlands NL	210,3	216,9	197,7	-19,2

Figure 1: Buyers and sellers in Europe (EUA, CER, ERU)

3. LANDFILL GAS (LFG) - Technical fields of application, explosion protection

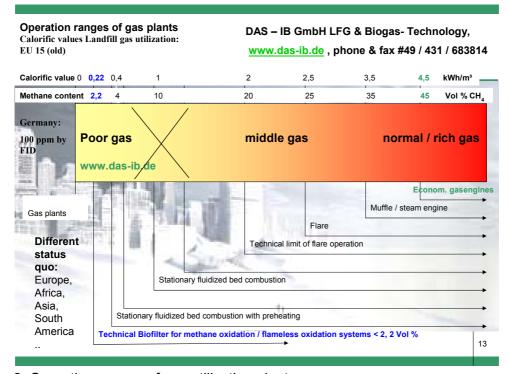


Figure 2. Operating ranges of gas utilization plants

4. Carbon / CO₂ trading certificates for landfill gas? YES

Fig. 3. Rough estimation of your income

The only risk is: "exact" gas prognosis, a "good" gas extraction system, operation costs and the O&M costs for a contract duration of 10 years or 3 times 7 years in a CDM – LFG- project. See:

- * Stachowitz, 15 Years of experience in the field of LFG disposal standards, problems, solutions and procedures, Sardinia 2001, 8th International Waste Management and Landfill Symposium
- * http://www.das-ib.de/mitteilungen/Payatas Landfill Gas PDD Comments.pdf
- * http://www.das-ib.de/vortraege/sardinia en.pdf

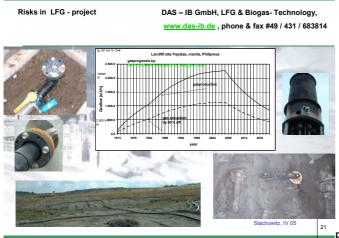


Figure 4. Risk in LFG - projects

5. CONCLUSIONS

CDM - projects:

Develop your projects before your government will enact regulations with regards to LFG oxidation or "waste to energy" in your host country.

JI - projects in "old" Europe (EU 15):

An ecological balance is more than necessary as a decision-making tool for the maintenance or discontinuance of the poor gas disposal operation for the CO₂ emissions trade, as by means of these plants, CO₂ emissions of the slightly caloric landfill methane gas may be reduced at a reasonable price.